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ABSTRACT 
In this paper, we are discussing the case of offering retired 
assessment items as practice problems for the purposes of 
learning in a system called ACT Academy. In contrast to 
computer-assisted learning platforms, where students 
consistently focus on small sets of skills they practice till 
mastery, in our case, students are free to explore the whole 
subject domain. As a result, they have significantly lower 
attempt counts per individual skill. 

We have developed and evaluated a student modeling 
approach that differs from traditional approaches to 
modeling skill acquisition by leveraging the hierarchical 
relations in the skill taxonomy used for indexing practice 
problems. Results show that when applied in systems like 
ACT Academy, this approach offers significant 
improvements in terms of predicting student performance. 
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INTRODUCTION 
Computer-based and computer-assisted educational systems 
have penetrated our daily lives. Computer-based delivery of 
one-size fits all content, assessment, or learning is no longer 
an option. Many fields of study are focusing on approaches 
to efficiently represent student knowledge. The central issues 
for these approaches are the accuracy and validity of the 
estimates. As the demand for the volume and the quality of 
the learning and assessment content is met, the question of 
serving the most appropriate content is crucial. The earlier 
we know the needs of the user, the earlier we can start 
helping them more efficiently. 

A student that just started using an adaptive problem practice 
technology has to commit to it for a significant amount of 
time before their user model saturates and stabilizes. 
However, not all students can stay long enough for the 
algorithms to get over the cold start problem. In some 
systems, students tend to skim and the evidence of student 
knowledge spreads thinly across the domain. 

We present an approach to saturating the diagnostic student 
profiles faster by utilizing the hierarchy of skills that practice 
problems are indexed with. We have obtained performance 
data of students working with a free to use ACT Academy 
that lets students practice their knowledge with retired ACT 
Test items. ACT Academy is already backed up by a 
diagnostic model that is the basis for the supplementary 
content recommendation. We have devised a series of 
computational experiments to determine whether, in the 
absence of the prior estimate of student's mastery of a skill, 
it is possible to abstract to a parent, coarser-grained skill in 
order to make a better than default judgment about student's 
performance. By modeling student skill at all levels of the 
skill hierarchy we show that it is possible to improve the 
accuracy of predictive modeling statistically significantly. 
ACT ACADEMY AND RAD API 
The ACT offers a free practice and assessment platform, 
ACT Academy (www.act.org/academy), that helps students 
review the skills that are assessed on the ACT college 
readiness assessment. ACT Academy delivers of short 5-10 
item practice quizzes as well as full-length practice tests that 
users can select in a self-directed manner. Test items on the 
quizzes are quality ACT Test items from previous years as 
well as items licensed from ACT partners. ACT Academy 
was launched in March 2018 and since then almost 100,000 
students registered and gave it a try. In addition to self-
assessment questions, ACT Academy offers curated text, 
video, and interactive resources on the topics covered in 
quizzes. Students can access these resources after completing 
and reviewing their mini-quiz results.  

ACT Academy’s is supported by Recommendation and 
Diagnostics (RAD) API. RAD API processes student 
responses to quiz items, maintains a diagnostic model of the 
learners and uses that data to generate personalized 
recommendations of remedial. RAD API receives reports of 
student performance and merges scores students received 
with question item metadata. After every question attempt, 
relevant student skills addressed in that question are updated 
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and a new personalized skill graph is generated for the 
student. A diagnostic model running in RAD API is based on 
the Elo rating system. It captures student skill abilities and 
skill difficulties. All of these values are tracked continuously 
as student performance data flows asynchronously. 

 
H.A.MATH.OAF.QPEF.QG.L2.1 
Holistic Framework • Core Academics • Math • Operations, 
Algebra, and Functions • Quadratic and Polynomial 
Equations and Functions • Quadratic Growth • Level 2 - 
Create a quadratic function for data 

Figure 1. An example of a Math question and the Holistic 
Framework skill that indexes it. 

These diagnostic records of student skill masteries are used 
to produce recommendations when learners request 
instructional resources. RAD uses its hierarchical knowledge 
of the subject domain to inspect the category of knowledge 
and evaluates which skills/ skill areas would be the most 
helpful for the learner to review. Recommendations draw on 
the catalog of instructional content. After learners interact 
with the learning resources, they continue the lifecycle by 
continuing their progress with more test preparation and 
practice with ACT Academy quiz/test items. 
SKILL-LEVEL DIAGNOSTICS IN RAD API 
Holistic Framework 
Act, Inc. developed a subject skill taxonomy called Holistic 
Framework covering domains of the ACT Test – Math, 
Reading, Science, and English [1]. Holistic Framework (HF) 
consists of over 4300 nodes. Every skill node of HF could be 
up to 8 levels deep. HF is the primary mean for indexing all 
new content ACT publishes including and not limited to 
ACT Test question items. See Figure 1 for an example of HF 
skill indexing of an ACT Test item. 
Elo Rating System 
RAD API uses an Elo rating system to produce diagnostic 
skill mastery values from student performance. Elo, named 
after its inventor Arpad Elo, is a rating system that tracks 
rating values of two classes of variables for the modeled 
events [2]. In chess, where Elo found its first use, the events 
are chess matches and the variables are opponent 1 ability 
and opponent 2 ability. After each match, the ratings of 
opponent abilities are updated based on the outcome (a win 
of either opponent or a draw). When Elo is used in the 
educational domain, an event is the student's opportunity to 

answer a question item correctly. The student is opponent 1, 
and the item is opponent 2. Often, a set of skills relevant to 
the question item represent opponent 2. Student abilities can 
be represented hierarchically as a set of student-skill abilities 
together with an overall ability. For an extended discussion 
see an overview paper by Gřihák and colleagues [3]. Elo has 
a few desired properties. First, Elo predominantly uses local 
updates of the tracked values – student abilities, item or skill 
difficulties. Second, it requires minimal fitting or tuning. 
And third, student success or failure always results in a 
respective increment or decrement of their tracked ratings. 
Simple Student-Item Elo 
The simplest case of an Elo is the student-item 
parameterization There is student’s unidimensional ability 𝜃" 
and difficulty of a question item 𝛽$. A probability of student 
i answering item j correctly is computed as shown in 
Equations (1) and (2). 

𝑝"$ = 1
1 + 𝑒*+,-.  (1) 

𝑚"$ = 𝜃" − 𝛽$ (2) 

Student-Skill Elo 
Instead of tracking item difficulties in the Simple Student-
Item Elo, one can replace them with skill difficulties if skill 
labels are available for all question items. This could be done 
for several reasons. One, if the data is coming from a system 
that has longer student exposure to skills, skills could be used 
as units of transfer to better track learning rather than using 
items that students interact with once or twice. Two, if the 
item pool is heterogeneous, less reliable, or extremely large 
and it is less efficient to track item properties. Equation (3) 
shows how to compute the probability of student i answering 
item j correctly, when skill difficulties are used. Variable 𝑞$2 
is an element of a Q-matrix – a matrix of 1’s and 0’s, where 
a value of 1 means that a skill is relevant to a question item. 

𝑚"$ = 𝜃" −3 𝑞$2𝛽2
2

 (3) 

Hierarchical Student-Student/Skill-Skill Elo 
The version of Elo that is used in RAD API is hierarchical. 
It tracks student abilities at two levels – overall, and per-skill. 
There is a global student 𝜃", as well as 𝜃"2 values per each 
student-skill tuple. Skill difficulties are also retained in this 
approach. The form of the probability of correctness for the 
hierarchical Elo is given in Equation (4). 

𝑚"$ = 𝜃" +3 𝑞$2𝜃"2
2

−3 𝑞$2𝛽2
2

 (4) 

Updates to Elo-tracked Values 
Values tracked by Elo (e.g., student abilities or skill 
difficulties) are maintained in the log-odds form. Initial 
values of all parameters are customary to be set to 0, before 
Elo has seen any data pertaining to those parameters. When 
a new data record arrives, special rules are used to update 
tracked values. Equations (5) and (6) show examples of these 



rules. Here, K is a sensitivity parameter which, in this case, 
is constant. 𝐶"$ is actual correctness of student's response (a 
value of 0 or 1), and 𝑝"$ is the prior estimate of the probability 
of correctness as it was defined in Equation (1). 

𝜃" = 𝜃" + 𝐾 ⋅ (𝐶"$ − 𝑝"$) (5) 

𝛽$ = 𝛽$ − 𝐾 ⋅ (𝐶"$ − 𝑝"$) (6) 

The difference between updating student and item 
parameters is the sign in front of the actual/expected value 
difference. When more student-level and environment-level 
parameters are used, for example, student-skill ability Elo 
and skill difficulty respectively, the sign is set in a similar 
manner. In Equations (5) and (6) single sensitivity K was 
used. One could use separate sensitivities for updating 
tracked parameters for students and items. There are also 
other ways to define sensitivity. An example of an alternative 
definition we used in our work is given in Equation (7). Here, 
K is redefined as a ratio, where the denominator – 𝑛" – is a 
number of prior data points used to re-estimate student 
ability 𝜃", and a and b are parameters. 

𝜃" = 𝜃" +
𝑎

1 + 𝑏𝑛"
⋅ (𝐶"$ − 𝑝"$) (7) 

Hierarchical Student-Student/Skill-Skill Elo used in RAD 
API has 3 classes of tracked values: student abilities, student-
skill abilities, and skill difficulties. The starting values for all 
of them are 0 on the logit scale. For each class of the values, 
there are two hyper-parameters – a and b (see Equation (7)) 
– that control value updates. Thus, there is a total of 6 hyper-
parameters in this version of Elo – quite a small number 
compared to other approaches. 
Propagation of the Student-Skill Ability Estimates 
RAD API explicitly tracks logit values student progress with 
leaf HF skills the question items were indexed with. 
However, HF skills are multi-level and, traditionally to ACT, 
students receive reports by subject (say Math) and area (one 
level below subject). In order to produce mastery values for 
higher-level HF nodes, an average is taken of the sub-nodes 
that are relevant to items a student has taken. Given the size 
of the HF taxonomy and the limited number of items each 
student might have attempted; this sort of propagation 
upward is an approximation over inherently sparse data. 
PROBLEM STATEMENT 
In the ACT Academy, when a student starts using a system 
that can offer dozens of question items per skill, a cold start 
problem arises. Given the size of Holistic Framework and 
other skill taxonomies and skill schemas known in the field, 
it is common to expect a certain period in the beginning when 
a student has to put faith in the diagnostic and 
recommendation power of the algorithms. We would like to 
make this period of uncertainly shorter, if possible, even if 
the skills practice is not focused. We are going to leverage 
the tree structure of the skills, in our case – the HF taxonomy 
– and track student mastery at multiple levels in order to 
reduce the diagnostic sparsity early on. 

APPROACH 
We will create a multi-level modeling version of the Student-
Student/Skill-Skill Elo variant we described ago and would 
perform a series of comparisons to rank it against a non-
multi-level version of the Elo. For simplicity, we will refer 
to them as Regular and Multi-level Elo model from now on. 
Elo Implementation 
Although Elo is a rating system, it could be treated as a 
machine learning model. A function could be defined that, 
given the student performance data and the hyper-parameters 
(of which our particular brand of Elo has 6), can compute a 
likelihood value. We used R software, its package 
optimParallel, and a custom objective function to find 
optimal values of Elo's hyper-parameters by running an L-
BFGS-B algorithm. It is also possible to define a gradient for 
Elo hyper-parameters. However, we opted to let 
optimParallel package simulate the gradient. 

Multi-level Elo 
The difference of the multi-level Elo from the regular version 
would be that, instead of updating student-skill ability for the 
leaf HF skill node only using Equation (7), we will be 
applying it to all of the ancestors of the skill node recursively. 
If, for example, a student answered a math question item 
from Figure 1, then student-skill ability valued would be 
updated for skills H.A.MATH.OAF.QPEF.QG.L2.1, 
H.A.MATH.OAF.QPEF.QG.L2, 
H.A.MATH.OAF.QPEF.QG, H.A.MATH.OAF.QPEF, and 
so on until root skill H. 

In the cases, when a lower-level student encounters a skill 
they have not seen before, multi-level Elo, instead of using a 
starting value of 0 logits as student-skill mastery, would 
make a walk up the skill hierarchy in search of a higher-level 
skill that has been estimated before. The search continues 
until an ancestor skill with at least one prior attempt is found.  

This approach is inspired and semantically similar to the-so-
called accordion procedure piloted in cognitive diagnostics 
[5]. There, authors, in the situation when skills are too 
numerous for a reliable assessment, resorted to higher-lever 
parent skills in order to improve the accuracy and reliability 
of the psychometric models. 
Model Comparison 
We used a combined 5 times 2-fold cross validation F-test to 
compare regular and multi-level Elo versions [6]. This 
approach was validated on multiple datasets and shown 
reliable model ranking results. The use of 2-fold cross 
validation defends against increased overlap of the training 
sets when the number of folds is 3 or more. This approach 
has low Type I error rate. Due to the nature of how Elo 
operates, we will only be using student-stratified cross-
validation so that whole student records are placed in one or 
the other folding of the data. To assess model performance, 
we will use accuracy and root mean squared error (RMSE). 
Accuracy would let us know how often the model guesses 
the right question answering outcome (right or wrong). 



RMSE would tell us how far numerically from the correct 
outcome our prediction was.  

An issue of how the performance metrics are computed when 
learning data is being modeled has been previously 
addressed when discussing the accuracy of the Deep 
Knowledge Tracing approach. In [7], authors argued that, for 
the learning data, it makes more sense to compute model 
performance by-skill and report an average value and not 
compute an overall performance for the whole dataset. The 
two approaches to computing model predictive accuracy 
could result in polar outcomes. In order to avoid the 
conundrum, we would compute models’ performance using 
both approaches and will refer to them as by-row (averaging 
model performance overall rows) and by-skill average 
(aggregating model performance within skills and then 
taking an average).  

As with any educational technology, there is great variability 
in how much effort each user spends with it. As a result, there 
is often a heavy tail of users that spent very little time in the 
system and are, sometimes, considered separately or are not 
considered at all. To draw model performance comparisons 
for the higher effort and lower effort users, we will perform 
a median split using the number of rows per each user as the 
criterion. Thus, we will compare models for all data, data of 
high effort users, and data of low effort users. 
DATA 
Data was collected by ACT Academy launched in March of 
2018. By January 2019, when the dataset was extracted, over 
3,340,000 attempts to solve over 1,000 distinct problems 
were done by 94,000 students covering over 280 distinct 
Holistic Framework skills. Students do not have long 
practice sequences with each skill. Out of about 2,175,000 
student-skill combinations, in 69% of the cases skills are 
attempted only once. In 12% of the cases – twice. In 6%, 3%, 
and 2% of the cases they attempt skills for 3, 4, and 5 times 
respectively. Six and more attempts per skill are made in 8% 
of the remaining cases. 
RESULTSLS 
Results of comparing regular (Student-Student/Skill-Skill) 
Elo to a multi-level version of the same model are given in 
Table 1. Rows show outcomes of the F-tests per {slice of 
data, type of comparison, metric} tuple. First of all, when 
inspecting by-row model performance metrics computations 
(unshaded table rows) none of the comparisons/F-tests come 
out significant whichever data slice we are taking and 
whichever metric (accuracy or RMSE) we are considering. 
Second, the multi-level model has an edge with respect to 
RMSE on all data and with respect to both accuracy and 
RMSE on the data of high effort students. There is no 
difference between models on low effort students' data. From 
these results, it could be concluded that multi-level Elo is 
superior to the regular Elo with a statistically tangible edge. 
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RMSE 0.4338 0.4340 0.122 n.s. 
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RMSE 0.4248 0.4246 0.000 *** 
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 Acc. 0.7303 0.7303 0.481 n.s. 
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 Acc. 0.7368 0.7371 0.041 * 

RMSE 0.4208 0.4207 0.000 *** 
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 Acc. 0.6829 0.6828 0.107 n.s. 

RMSE 0.4516 0.4518 0.123 n.s. 
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 Acc. 0.6870 0.6863 0.380 n.s. 

RMSE 0.4473 0.4474 0.438 n.s. 
Table 1. Comparison of Regular Elo and Multi-level Elo. We 

list averages across 10 values of 5 runs of 2-fold cross-
validation. "n.s." means the comparison result is not 
significant. Boldface number highlights statistically  
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