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ABSTRACT 
Bayesian Knowledge Tracing (BKT) models were in active use in 
the Intelligent Tutoring Systems (ITS) field for over 20 years. 
They have been intensively studied, and a number of useful 
extensions to them were proposed and experimentally tested. 
Among the most widely researched extensions to BKT models are 
various types of individualization. Individualization, broadly 
defined, is a way to account for variability in students that are 
working with the ITS that uses BKT model to represent and track 
student learning. One of the approaches to individualizing BKT is 
to split its parameters into per-skill and per-student components. 
In this work, we are proposing an approach to individualizing 
BKT that is based on Hierarchical Bayesian Models (HBM) and, 
in addition to capturing student-level variability in the data, 
weighs the contribution of per-student and per-skill effects to the 
overall variance in the data.  
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1. INTRODUCTION 
Bayesian Knowledge Tracing (BKT) is one of the most popular 
student modeling techniques in the field of Intelligent Tutoring 
Systems (ITS). It has been in active use for over two decades and 
has been confirmed to be the modeling approach researchers can 
rely on. 

Over the years, a large number of extensions to the standard BKT 
were proposed and tested in posthoc analyses as well as 
experimentally. Among the most widely researched additions to 
BKT is the ability to account for students’ individual traits. It has 
been confirmed in the are of modeling student learning in general 
and in the case of BKT that accounting for student-level 
variability in the data could benefit the model’s statistical 
goodness of fit, as well as potentially improve the generalizability 
of the model. 

Known approaches could be separated into three groups. The first 
group, binary multiplexing of the initial skill mastery probability 
based on the student characteristics, for example, the correctness 
of the first response (Pardos & Heffernan, 2010). This method has 
been proven to benefit the overall student model quality, and the 
implementation of this approach was a runner-up in the 2010 
KDD Cup data mining challenge. The second group, fitting BKT 
parameters not across students for a particular skill, but for a 
student/skill pair (Lee & Brunskill, 2012). This approach has not 
been evaluated for predictive correctness. The third group, are the 
methods separating BKT parameters into per-student and per-skill 
components (Corbett & Anderson, 1995; Yudelson et al., 2013). 

The two approaches from the third group were shown to improve 
model fits reliably. 

While the BKT individualization approaches mentioned above 
were successful in one way or the other, are arguably yet to 
achieve a sufficient flexibility and rigor of the available 
parameterization devices. In this paper, we propose and 
investigate an individualized Bayesian Knowledge Tracing that, 
on top of refining certain aspects of its predecessor (Yudelson et 
al., 2013), draws on the flexibility of the Hierarchical Bayesian 
Models' representation to capture relative weight of student-level 
and skill-level variability in the learning data as defined by 
respective parameters. Also, we empirically explore the 
possibility of clustering student-level factors via mixes of 
Gaussian distributions. 

The rest of the paper is organized as follows. Section 2 discusses 
the related work. Section 3 outlines the methods. Section 4 
describes the data we used for this investigation. Section 5 talks 
about the results. Finally, Section 6 closes with a few discussion 
points. 

2. RELATED WORK 

2.1 Bayesian Knowledge Tracing 
Bayesian Knowledge Tracing (BKT) is a probabilistic framework 
(Corbett & Anderson, 1995) it is used to assess student progress 
with a unit of knowledge often referred to as skill. Upon correct or 
incorrect action, an estimate of student mastery of skill(s) is re-
computed. Computationally, BKT is a Hidden Markov Model 
with two hidden states, representing whether a particular skill is 
un-mastered or mastered. Observations of student performance on 
opportunities to practice a skill are binary: a student either solves 
a problem step correctly or not (due to error or because of a hint 
request). While students might go through dozens of attempts to 
get a particular step correct, traditionally, only students’ first 
attempts are considered for updating skill mastery estimates. 

There are four skill parameters used in BKT: initial probability of 
knowing the skill a priori – p(L0) (or p-init), probability of 
student’s knowledge of a skill transitioning from not known to 
known state after an opportunity to apply it – p(T) (or p-learn), 
probability to make a mistake when applying a known skill – p(S) 
(or p-slip), and probability of correctly applying a not-known skill 
– p(G) (or p-guess). Given that parameters are set for all skills, the 
formulae used to update student knowledge of skills are as 
follows. The initial probability of student u mastering skill k is set 
to the p-init parameter for that skill Equation (1a). Depending on 
whether the student u applied skill k correctly or incorrectly, the 
conditional probability is computed either using Equation (1b) or 
Equation (1c). The conditional probability is used to update the 
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probability of skill mastery according to Equation (1d). To 
compute the probability of student u applying the skill k correctly 
on an upcoming practice opportunity one uses Equation (1e). 

𝑝 𝐿! !
! = 𝑝 𝐿! ! (1a) 

𝑝 𝐿!!!|𝑜𝑏𝑠 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 !
!

=
𝑝 𝐿! !

! ∙ 1 − 𝑝(𝑆)!

𝑝 𝐿! !
! ∙ (1 − 𝑝(𝑆)!) + (1 − 𝑝 𝐿! !

!) ∙ 𝑝(𝐺)!
 (1b) 

𝑝 𝐿!!!|𝑜𝑏𝑠 = 𝑤𝑟𝑜𝑛𝑔 !
!

=
𝑝 𝐿! !

! ∙ 𝑝(𝑆)!

𝑝 𝐿! !
! ∙ 𝑝(𝑆)! + (1 − 𝑝 𝐿! !

!) ∙ (1 − 𝑝(𝐺)!)
 (1c) 

𝑝 𝐿!!! !
! = 𝑝 𝐿!!! 𝑜𝑏𝑠 !

! + (1 − 𝑝 𝐿!!! 𝑜𝑏𝑠 !
!) ∙ 𝑝(𝑇)! (1d) 

𝑝 𝐶!!! !
! = 𝑝(𝐿!)!! ∙ (1 − 𝑝(𝐺)!) + (1 − 𝑝(𝐿!)!!)

∙ 𝑝(𝐺)! (1e) 

2.2 Introducing Student-Level Factors to the 
Bayesian Knowledge Tracing 
Having student-level parameters is a regular feature of models of 
student learning and learning performance. The logistic regression 
based Rasch model (van der Linden & Hambleton, 1997) that 
captures test item complexity and its extension –the Additive 
Factors Model (Cen et al., 2008) both include a parameter to 
account for variability in the student a priori abilities. Including 
student-level parameters in these models helps both the fit as well 
as the interpretability of the models overall. 

There were a few attempts to introduce student-specific 
parameters to otherwise skill-only standard BKY. The original 
work on BKT (Corbett & Anderson, 1995) discussed fitting skill-
level and student-level parameters on respective slices of the data 
to later combine and apply the two in the context of each student-
skill pair. As a result, the correlation of expected and observed 
within-student accuracies was higher for the thus individualized 
model. 

Another approach to individualization suggests the multiplexing 
probability of initial skill mastery (p-init) based on student cohort 
(Pardos & Heffernan, 2010). Based on the correctness of the first 
student’s response, the appropriate skill p-init is set to the lower or 
higher predetermined constant. This prior-per-student model 
outperforms standard BKT on a significant fraction of problem 
sets authors considered. 

According to yet another approach (Lee & Brunskill, 2012), BKT 
parameters were fit within each student-skill pair's data slice and 
not across skills or students. Authors did not discuss on the 
goodness of fit of their individualized models, however. Their 
primary focus was on whether the individualized model when 
deployed in an intelligent tutoring system, would schedule fewer 
or more problems to be solved as compared to standard BKT 
model. The conclusion was that a considerable fraction of 
students, as judged by individualized model, would have received 
a significantly different amount of practice problems. 

Finally, another individualization approach that we would be 

using for comparison in this work suggests something akin to the 
original discussion of the BKT individualization (Yudelson et al., 
2013). Student and skill components of BKT parameters are fit 
one set after the other using a coordinate gradient descent 
procedure with an active parameter set maintained throughout the 
process. In addition to improved fits, BKT models individualized 
this way were shown to lead to optimized problem-sequences 
leading to saving students some efforts. 

Overall, there is enough evidence that introducing student-level 
parameters to BKT benefits the fit of the model and could 
optimize student learning experience. 

2.3 Introducing Item-Level Factors to the 
Bayesian Knowledge Tracing 
Recently, a noticeable amount of work focused on addressing 
item-level variability in BKT models. Pardos & Heffernan (2011) 
presented their KT-IDEM model that features special nodes that 
capture item difficulties and, together with skill-level latent 
variables are influencing the student performance. 

In the approach Huang and colleagues took (Huang et al., 2015), it 
is possible to address not just items, but even item level features, 
adding parameters in a way it is done in regression analysis. In 
another work (Khajah et al., 2014), authors are discussing 
merging an IRT model and BKT model. This approach resulted in 
an HBM that combines features of both. It is worth to note that the 
latter two use Markov Chain Monte Carlo methods to fit their 
models. 

3. METHODS 
Our objective is to introduce further improvements to the 
approach to individualizing BKT and draw comparisons to regular 
BKT as well its original version in terms of statistical fitness as 
well as and to attempt to judge the plausibility of their respective 
student-level parameters. 

3.1 Individualized BKT Model via 
Parameter-Splitting 
Individualization of the BKT that was proposed in (Yudelson et 
al., 2013) prescribes to put every individualized parameter in the 
context of a particular student that works on a particular skill. In 
this context, p-init, p-learn, p-slip, and p-guess parameters have 
two components: a per-skill component and a per-student 
component. The two are combined using a pairing function shown 
in Equation 2a. Here, components are first converted from 
probability scale to log-odds scale using logit function (Equation 
2b), added, and the sum is converted back to the probability scale 
using sigmoid function (Equation 2c). An individualized model, 
where all per-student components are equal to 0.5 (0 on the log-
odds scale) is equivalent to the standard BKT model. 

𝑓 𝑃!! ,𝑃!! = 𝑆 𝑙 𝑃!! + 𝑙 𝑃!!  (2a) 

𝑙 𝑝 = ln
𝑝

1 − 𝑝
 (2b) 

S x =
1

1 + e!!
 (2c) 

Fitting of such individualized BKT (iBKT) model is done by 
computing gradients of the log-likelihood function given 
individual student/skill data samples with respect to every iBKT 
parameter (Levinson et al., 1983). On every odd run, gradients are 
aggregated across skills to update skill component of the 
parameters. On every even run, the gradients are aggregated 
across students to update respective student components. This 
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block-coordinate descent is performed until all parameter values 
stabilize up to a pre-set tolerance criterion. An active set of 
parameter components is maintained to fit only those that still 
haven't stabilized. An extended discussion of the method, as well 
as derived formulas for the gradients is given in the original 
publication of this work (Yudelson et al., 2013). 

The standard and individualized model described above we 
implemented in the tool called hmm-scalable. The tool has a 
suite of solvers, including the classical BKT Expectation 
Maximization solver for standard BKT, as well as a set of 
stochastic and conjugate gradient descent solvers. Hmm-
scalable is freely available on GitHub repository1 of the 
International Educational Data Mining Society (standard BKT 
models only). 

3.2 Individualized BKT via Hierarchical 
Bayesian Model 
We have also implemented the BKT as well as the iBKT approach 
described above in the form of a Hierarchical Bayesian Model 
(HBM). HBMs allow for a more universal and flexible way of 
representing iBKT. The HMB BKT just like the hmm-scalable 
BKT had 4N parameters, where N is the number of skills. In the 
iBKT models, both hmm-scalable and HBM version, only the p-
init and p-learn were individualized. Thus, the number of 
parameters in the hmm-scalable version of iBKT was 4N+2M, 
where M is the number of students. HBM version of the iBKT 
treated per-student parameters as being drawn from Gaussian 
distributions and had 4 hyper-parameters: mean and standard 
deviation for student-level p-init and p-learn. While we did not 
specifically check or prove this, but intuitively, confining a 
parameter to the bounds of a particular distribution serves as a 
form of regularization and, theoretically, could improve the 
generalizability of the model. Although iBKT models 4N+2M had 
parameters, the per-student and per-skill parameters, when 
combined using the pairing function from Equation 2a, could 
result in up to 2N+2NM in-context parameters. P-guess and p-slip 
were not individualized (2N), 2NM represents all possible 
combinations of students and skills for p-init and p-learn. 

𝑓 𝑃!! ,𝑃!! ,𝑊!,𝑊! ,𝑊!,𝑊!" = 
= 𝑆 𝑊! +𝑊!𝑙 𝑃!! +𝑊!𝑙 𝑃!! +𝑊!"𝑙 𝑃!! 𝑙 𝑃!!  

(3) 

The main contribution of this paper is to not only mix per-student 
and per-skill parameters together but to weight each component of 
the mixture in an attempt to define whether either one has a larger 
impact on the resulting in-the-context parameter value. We have 
taken Equation (2a) and changed into Equation (3). Here we have 
the bias term (W0), the weights for the per-skill and per-student 
components (Wk and Wu respectively), and also the interaction 
term for the two with the weight (Wuk). The W

� weights are drawn 
from Gaussian distribution. Each of them is constrained to [0, 1], 
and the sum is fixed at 2. We have used the same W

�
 weights for 

mixing both p-init and p-learn. Thus, we have 8 additional 
hyperparameters and this new model, that we will refer to as 
iBKT-W HBM, has 4N+2M+4 parameters and 12 hyper-
parameters. If {W0, Wk, Wg, Wgk} weights were set to {0, 1, 1, 0} 
respectively, the model would we equivalent to the iBKT HBM 
model. 

When exploring the per-student parameter values if the iBKT-W 
HBM model, we have noticed that, in spite of being drawn from 

                                                                    
1 https://github.com/IEDMS/standard-bkt 

the Gaussian distribution, the actual distribution has a hint of 
being binomial (rf. Figure 1). It is especially visible for the 
distribution of the per-student values of p-init. In order to address 
this phenomenon, we have created yet another HBM model, that 
we will call iBKT-W-2G HBM, where the per-student p-init and 
p-learn parameters will be drawn from a mixture of 2 Gaussian 
distributions. In this new model, there are 4 means of the 
Gaussians distributions (2 for per-student p-init and 2 per-student 
for p-learn), 2 variances (1 for per-student p-init and 1 per-student 
for p-learn) instead of 4 as in iBKT-W HBM. The membership in 
one or the other mixture is modeled by a 2-parameters categorical 
distribution based on Dirichlet(1,1) distribution. Thus, there are, 
just as before, 4N+2M+4 parameters, while the number of 
hyperparameters is 16. Table 1 summarizes the information about 
parameters of all of the models we have considered in this work. 

HBM versions of the three iBKT models are not supported by 
hmm-scalable. To build them we used BUGS language (Lunn 
et al., 2009) implemented as rjags package in R (Plummer, 
2016). As opposed to hmm-scalable, that uses a form of exact 
inference, BUGS models were build using the Gibbs Sampler 
implemented in the rjags package. 

To fit HBM iBKT models we used 10 chains running in parallel 
for the duration of 500 iterations. Unfortunately, it is not possible 
whether a model fit using a Gibbs sampler has converged. It is, 
however, possible to say whether it did not. In our experimental 
runs, we have confirmed there were no signs that the models 
failed to converge. Each model took roughly 1 hour to finish. 

 

Table 1. Model parameters and hyper-parameters. Number of 
skills – N, number of students – M 

Model Parameters Hyper-parameters 

Majority Class 0 0 
Standard BKT hmm-
scalable 4N 0 

Standard BKT JAGS 4N 0 

iBKT hmm-scalable* 4N+2M 0 

iBKT HBM* 4N+2M 4 

iBKT-W HBM * 4N+2M+4 12 

iBKT-W-2G HBM * 4N+2M+4 16 

* for all iBKT models we only individualize p-init and p-learn. 

4. DATA 
We used the data from the KDD Cup 2010 Educational 
Datamining Challenge2. The data was donated by Carnegie 
Learning Inc., a publisher of mathematics curricula and a 
producer of intelligent tutoring system – Carnegie Learning’s 
Cognitive Tutor – for middle school, high school, and college. 
The KDD Cup 2010 datasets are quite large. Algebra dataset has 
close to 10 million student transactions, and pre-algebra dataset 
has a little over 20 million transactions. 

Although computational capabilities of the hmm-scalable tool 
allow fitting BKT and iBKT models within minutes, R 

                                                                    
2 http://pslcdatashop.web.cmu.edu/KDDCup 
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implementation of the Gibbs Sampler and the BUGS language are 
not as scalable. Because of that, we have selected a subset of the 
pre-algebra dataset, namely, a sample where students worked on 
Linear Inequalities unit. This sample consisted of 66,307 
transactions of 336 students. This sample only contained 
transactions labeled with the skills that the Carnegie Learning’s 
Cognitive Tutor tracks. There were 30 skills that the unit on linear 
inequalities taught. 

From the rich feature set of the data we took four columns: 
success at first attempt at a problem step (student activity is 
blocked and sequenced into working on individual problem steps 
and BKT traditionally only looks at the first attempt; anonymous 
student id; concatenation of curriculum unit, section, and problem 
(was not necessary for our analyses, but required by hmm-
scalable); and relevant skill(s) practiced at that particular step. 

5. RESULTS 
5.1 Model Fits 
The results of statistical fitness of the models we have discussed 
are in Table 2. There we list four fitness metrics, the Deviance 
Information Criterion (van der Linde, 2005), root mean squared 
error, Accuracy and area under ROC curve (A’). DIC is a metric 
based on log-likelihood. It is often used for Bayesian model 
selection. Accuracy is a point measure of how often the model 
guesses the correct response (here whether the student was correct 
or incorrect). RMSE goes a little further by quantifying how close 
the each prediction is to the correct classification of a correct or 
incorrect response. The area under the ROC curve is a measure of 
how well the model can tell the classes or responses apart. As the 
name suggests, it is a curve metric, without a working point, like 
accuracy (with which a 0.5 threshold is often used). 

As wee can see in Table 2, the majority class model performance 
is low as expected A' is at 0.50 (as it should be), accuracy is about 
72%. There are usually more correct responses in the Carnegie 
Learning's Cognitive Tutor data since the tutor breaks problems 
into steps and guides students towards the correct solution. 

As we move down in Table 2, we can see that model accuracies 
start improving. Standard BKT models outperform Majority 
Class. There is a small advantage of the HBM model fit using R 
implementation of JAGS over the hmm-scalable. iBKT 
models (here we only individualize p-init and p-learn) are a 
further improvement of the fit, again, with a small advantage for 
the HBM version of the model. The weighted version of the iBKT 
(iBKT-W) is only implemented as an HBM and, again, shows an 
improvement overall (in terms of DIC, RMSE, and A'). 

Table 2. Performance of the models 

Model DIC RMSE Acc. A’ 

Majority Class  0.52516 0.7242 0.5000 
Standard BKT hmm-
scalable 66230 0.40571 0.7561 0.7649 

Standard BKT HBM 65347 0.40299 0.7569 0.7728 

iBKT hmm-scalable* 64215 0.39376 0.7680 0.7990 

iBKT HBM * 63644 0.39287 0.7692 0.7992 

iBKT-W HBM * 63587 0.39236 0.7687 0.8005 

iBKT-W-2G HBM * 63412 0.39252 0.7689 0.8005 

* for all iBKT models we only individualize p-init and p-learn. 
In addition to observing model fits, we have performed one round 
of 3-fold item-stratified cross-validation to verify whether the 
differences between the iBKT model fit by hmm-scalable and 
the iBKT-W model fit by JAGS become more visible. Although 
the fit metrics deteriorated a bit, the partial order of the models 
regarding the goodness of fit did not change. 

5.2 Per-Skill and Per-Student Parameters 
When we plotted the densities of per-student p-init and p-learn 
parameters for the weighted iBKT, we have noticed that the 
distributions had a hint of bimodality, especially the distribution 
of per-student p-init (rf. Figure 1). Given that the HBM is drawing 
parameter values from a Gaussian distribution, the bi-modality is 
quite pronounced. To check our intuition, we have constructed a 
modified version of the weighted iBKT where per-student p-init 
and p-learn are mixstures of two Gaussians. The new model, 
iBKT-W-2G, did not show improvement in fit statistics, except 
for DIC. However, the distributions of the corresponding per-
student p-init and p-learn were visibly bimodal (rf. Figure 6). The 
two means for the p-init parameters are 0.280 and 0.786. The two 
means for the p-learn parameters are 0.277 and 0.630. 

The weights for pairing the per-student and per-skill parameters 
for both of the weighted iBKT models are given in Table 3. Both 
the bias weight W0 and interaction Wuk seem to be sufficiently 
small. Although there is no exact agreement between the two 
models, in both the weight of the per-skill parameters (Wk) are two 
to three times smaller than that of per-student parameters (Wu).  

 
Figure 1. Density plots for per-student p-init and p-learn 

parameters of iBKT-W HBM model. 

 
Figure 2. Density plots for per-student p-init and p-learn 

parameters of iBKT-W-2G HBM model. 
Table 3. Skill-student weights in iBKT-W models 

Model W0 Wk Wu Wuk 

Proceedings of the 9th International Conference on Educational Data Mining 559



iBKT-W HB 0.012 0.565 1.420 0.004 

iBKT-W-2G HBM 0.019 0.700 1.274 0.007 

5.3 Extra Look At Per-Skill and Per-Student 
Parameters 
In an attempt to investigate the differences between iBKT model 
fit using hmm-scalable and the iBKT-W-2G fit using JAGS, 
we have plotted the per-student p-init and p-learn parameters for 
both. The respective plots are in Figure 3 and Figure 4. As we can 
see in Figure 3, where per-student parameters of iBKT hmm-
scalable model are plotted, correlation of p-init and p-learn is 
mid-range and is equal 0.55. Notably, a tangible portion of 
students, as estimated by the model, have low p-init and high p-
learn parameters. If we interpret p-init as student’s overall prior 
preparation and p-learn as student’s overall rate of learning, these 
would be the students that came in with the low level of 
knowledge and quickly caught up. Using the same logic, there are 
also a few students that came in with high prior knowledge but 
suffered from low learning rate. 
The plot of per-student p-init and p-learn parameters of iBKT-W-
2G HBM model is entirely different (rf. Figure 8). The correlation 
is very high – 0.90. Although the student points are lined up 
almost linearly, it is possible to discern two clusters (lower left, 
and upper right) that roughly correspond to two mixed Gaussians 
represented by a categorical node in the model. Here, there are 
effectively no students in the upper left or bottom right corners of 
the graph. Namely, those arriving with lower preparation, but the 
high rate of learning, or, vice-versa, high preparation, but the 
lower rate of learning. The former is unfortunate since the 
unprepared students that can quickly close the gap are, arguably, 
the most desired ones since they make the application that assisted 
them (e.g., Carnegie Learning's Cognitive Tutor) shine.  

 
Figure 3. Scatter plot of per-student p-init (x-axis) and p-learn 

(y-axis) from iBKT model fit by hmm-scalable. The 
correlation between the two is 0.55 (significant at 0.001 level). 

 
Figure 4. Scatter plot of per-student p-init (x-axis) and p-learn 

(y-axis) from iBKT-W-2G model fit by JAGS in R. The 
correlation between the two is 0.90 (significant at 0.001 level). 

6. DISCUSSION 
6.1 Small Differences in Statistical Fits 
Arguably the most pressing question about comparing the hmm-
scalable-fit iBKT model and the HBM models is why the 
differences in statistical accuracy are so small. Given that some of 
the changes in per-student parameters are quite large (rf. Figures 3 
and 4), we are to expect more pronounced differentiation, 
especially since the fitting method and parameterization changed. 

We would like to refer to an earlier work where we examined 
alternative parameterizations of a logistic regression model of 
student math learning (Yudelson et al., 2011). As we have found 
there, despite virtually no difference in statistical fit, the 
parameter values and especially their interpretability improved. 
We did not estimate the interpretability of the parameter values of 
the HBM models, however, the relative distribution of the iBKT-
W-2G HBM per-student parameters is, arguably, more realistic 
than that of the iBKT hmm-scalable.  

Besides, as we were able to show in (Yudelson & Ritter, 2015), 
the absence of a tangible difference in statistical fit between two 
models may, none the less, correspond to considerable variance in 
assigned practice when the models compared are deployed in the 
actual system and used for knowledge tracking and problem 
selection. 

6.2 What Do The Gaussians Mixtures 
Represent? 
We have followed the trace of the possible bi-modal distributions 
of per-student p-init and p-learn parameters in the iBKT-W and 
constructed iBKT-W-2G model where per-student parameters are 
represented as mixtures of 2 Gaussian distributions with the same 
standard deviation. 

To reverse-engineer the fuzzy mixture variable that clusters 
students we have attempted to correlate it with a set of student 
performance metrics. These included: overall number of problems 
solved, time spent, hints requested (both on the first attempt at a 
step and overall), errors committed (both on the first attempt at a 
step and overall), percent correct (both on the first attempt at a 
step and overall), time spent per problem, errors committed and 
hints requested per problem. None of them correlated with the 
fuzzy mixture variable reliably. It is likely that the resulting 
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clustering represents some latent student factor, we just could not 
interpret it. 

6.3 Weighting Per-Skill and Per-Student 
Parameters 
We have tried more models than the two HBM iBKT-W's we 
reported. The models included those individualizing p-init and p-
learn separately or together, with weighting or without, mixing 1, 
2, or 3 Gaussians (18 variants overall) – in all cases per-student 
parameter component weight was two-to-three times larger than 
that of per-skill components. One explanation for that could be 
possible over-fitting. There are 336 students and 30 skills. Even 
though the model is hierarchical and both per-skill and per-student 
parameter values are regularized, they are an order of magnitude 
more per-student values. To confirm or disconfirm the over-fitting 
hypothesis we would have to perform multiple sample-and-fit 
rounds where the number of students is equal to the number of 
skills. 
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