
Using Numeric Optimization To Refine Semantic User 
Model Integration Of Educational Systems 

Michael Yudelson1, Peter Brusilovsky1, Antonija Mitrovic2, Moffat Mathews2 
{mvy3, peterb}@pitt.edu, {tanja.mitrovic, moffat.mathews}@canterbury.ac.nz 

1 University of Pittsburgh, School of Information Sciences 
2 University of Canterbury, Department of Computer Science and Software Engineering 

Abstract.  Nowadays, it is a common practice to use several 
educational systems in one domain. In this situation, each of the 
systems should be able to provide the best user modeling based on 
the integrated data about the user. However, differences in domain 
conceptualization complicate the ability of the systems to 
understand each other’s user models and necessitate the use of 
labor intensive and time consuming alignment procedures that 
require involvement of knowledge engineers. While the latter are 
best at detecting associative links between the user model items, 
they fail to reliably identify the strengths of these associations. In 
this paper, we are proposing a method to improve the user model 
mapping by using a numerical optimization procedure. Our results 
show that numerical weight optimization helped to decrease the 
amount of manual work and improved the target model accuracy. 

1 Introduction 

Over the recent decade, many state-of-the-art user-adaptive systems evolved from 
research prototypes to real-life production applications. Social interaction, information 
access, and E-Learning are the areas where the user-adaptive content is booming. In some 
fields (educational systems for example), the concentration of user-adaptive systems is 
such that several are available for each topic. Despite their availability, adaptive systems 
do not compete but complete each other, implementing only part of an ideal fully 
functional system. They offer unique features unable to completely replace their rivals. 
This creates a problem in using them together to embrace the full range of features 
offered separately. To enable coherent use, systems should be able to mutually exchange 
and understand collected user data. In an ideal scenario, user models should be integrated. 

There are two major approaches to user model integration. The most widespread and 
popular is translation [15] (or mediation [1]). Here, systems exchange complete snapshots 
of their user models and convert them into local representations. The operation of 
translation is costly. However, since translation/mediation is usually employed when the 
systems are used sequentially, these costs stay insignificant. When systems are used in 
parallel, holistic translation/mediation poses a problem when large chunks of user data 
need to be exchanged and converted (even after minor updates to one of the models). 

In the situation of parallel systems’ use, evidence-based integration is more appropriate, 
because user-adaptive systems do not exchange whole user models. Instead, they share 
results of elementary user actions. When one user model is updated, only the changes are 



conveyed to the other system’s user model. The cost of conversion is lower as fewer user 
model items require conversion. Although, in the case of the evidence-based approach, 
the problem of user model integration is of a seemingly smaller scale; the question of 
user model conversion is still quite complicated. This is especially true for the field of 
adaptive education systems (AES). In AES, each learning object (problem, example, test) 
is commonly described in terms of constructs of the domain model often called concepts. 
In reality, systems seldom share the representation of the models, even in closely related 
domains. Under these conditions, evidence integration becomes a challenging task.  

Because of the differences in the domain model representations, concepts from one 
system could be related to several concepts from the other; they may feature different 
strengths of relations. To be able to convert user model data between systems, researchers 
often employ domain experts and knowledge engineers who manually identify links 
between domain models of the systems and assign strengths to them. Although human 
experts are known to be able to find related complex relations between domain models 
effectively, they do have problems assigning numerical weights for the strengths [6]. The 
very same expert could change his/her weighting decision if the process is repeated. 

In this paper, we are addressing the problem of evidence-based user model integration for 
two educational systems in the area of databases: SQL-Tutor [11] and SQL KnoT [14]. 
Our prior work on integrating the user models of these systems has shown that expert 
involvement only partially solves the problem of integration [2]. While experts agree on 
the concept associations, assigning weights is extremely time consuming and often leads 
to conflicting results. To solve these problems, we are proposing an optimization 
procedure intended to aid experts in mapping domain models of the two systems. This 
procedure is designed to significantly cut the amount of efforts and time, optimize the 
mapping weights, and potentially refine the structure of the concept mapping links. 

The rest of the paper is organized in the following way. Section 2 addresses related work. 
Section 3 talks about the ongoing integration of the two systems in question, identifies a 
problem, suggests a solution, and lists our hypotheses. Section 4 discusses the 
experimental work. And finally, section 5 finishes with discussion points. 

2 Related Work On User Model Integration 

The task of making two adaptive systems understand each other’s user models is quite 
challenging. It requires aligning the domain vocabulary of one against the other, so that 
both systems can correctly interpret assumptions about the users from the partner system 
and employ user data to improve their own performance. Domain model alignment 
leading to a successful integration requires resolution of multiple inconsistencies. The 
less complex are the inconsistencies at the language-level. Among these are differences 
in syntax, differences in clarity, varying use of semantics, etc. The more complex 
inconsistencies are the model-level mismatches occurring due to the discrepancy in 
structure and/or semantics of the domain models. Resolving these kinds of 
inconsistencies entails dealing with: naming conflicts (the same concept termed 
differently in two models or the same term defining different concepts); different graph 
structure (relevant sets of concepts connected differently); different scopes (e.g. two 



models covering different parts of the domain); different granularities (a single concept of 
one model covering a portion of domain knowledge represented by several concepts in 
another model); and adherence to different modeling paradigms and conventions. 

Common ontology. User models can be exchanged and mutually interpreted when user 
models of two systems rely on a common domain ontology. A good example of common 
ontology integration is the OntoAIMS project [7]. Here, two separate systems OWL-
OLM and AIMS are deployed with mutual regard for interoperability. Both systems 
represent their domain models in the form of ontologies and user models – as overlays of 
these ontologies. The shared user model is populated and read by both systems. Another 
approach to common ontology integration is to devise a central user modeling server (e.g. 
Personis [10], CUMULATE [4]). Such servers store domain models, perform centralized 
user modeling, and deliver user data to participating adaptive systems. 

The intermediary ontology is used when systems agree on a single ontology. 
Regrettably, the field of user-adaptive systems is far from producing ontologies, which 
would be widely accepted. It is often rather difficult to make an ontological commitment, 
as different research teams design ontologies with different views of the 
conceptualization of the domain. A good example of the use of an intermediary ontology 
is the M-OBLIGE architecture [12]. Here, a common reference ontology of SQL works 
as a multi-translator and facilitates the exchange of the user model information.  

Automatic ontology mapping. The approaches presented above are practical solutions 
for semantic integration of multiple user-adaptive systems. However, their applicability is 
reduced by the need to either adapt to an alternative representation of the domain or to 
perform time-consuming and mostly manual knowledge engineering work. Nevertheless, 
cases exist where the use of ontologies for domain modeling permits automatic alignment 
them [9]. Automation helps to find matching concepts and relies on techniques of natural 
language processing, graph theory, information retrieval, and statistics to discover similar 
lexical patterns, conceptual sub graphs, and regularities in accompanying text. Fully 
implemented ontology mapping solutions are not yet known. But authors of [15], when 
investigating the applicability of automatic ontology mapping, have shown that it has the 
potential to be close to the best possible translation done by human experts. 

Evidence-based integration. To successfully integrate user-adaptive systems, one does 
not have to align entire ontologies each time. Instead, integration could be performed on 
single units of user information: reports of user activity, assumptions about user 
knowledge, preferences, and goals – all described in terms of domain model concepts. 
This data arrives to the user model sequentially as a series of events. Translation is 
applied to one or a set of events as shown in Figure 1. Model values are often exchanged 
as soon as they are produced by one of the systems. An example of the evidence-based 
integration is the work on integrating Ramapo Problets and QuizJET systems [3]. Both 
systems have internal domain ontologies of Java programming and the ontologies are 
different in granularity and focus of modeling. Integration of user data is done on the side 
of QuizJET. QuizJET uses the ontology concepts in the classical descriptive metadata 
sense, while Ramapo Problets uses the concepts-in-a-context paradigm, where each 
concept is accompanied by a descriptor of its situational application (e.g. for-loop vs. for-



loop-executing-exactly-once). This leads to the situation when each of the Ramapo 
Problets’ concepts-in-context is related to a sizable weighted set of QuizJET concepts. 

 

Figure 1 Evidence-based integration of two user models 

The problem with all of the approaches above is that they heavily rely on time-consuming 
work on the part of experts to produce the mapping function. While experts are best for 
selecting the semantic relations between concepts of the domain models, the quality of 
their assignment of strengths to the inter-concept links is sub-optimal [6]. In our work, we 
are seeking to improve user model integration by utilizing an optimization procedure to 
either refine expert mapping weights or to produce them without human involvement, 
potentially altering the expert-suggested mapping links. 

3 From Manual To Automated Student Model Mapping 

3.1 Model Mapping For Evidence-Based Integration 

In our previous work, we have dedicated a lot of attention to evidence-based integration 
of user models in the SQL domain. This work revolved around two systems: SQL Knot 
and SQL-Tutor. SQL KnoT [14] is an external-loop tutor serving parameterized problems 
testing students’ knowledge SQL. SQL KnoT represents domain model in the form of an 
ontology that has been developed by a team of human experts. Each problem is semi-
automatically indexed with a set of ontology concepts. SQL-Tutor [11] is an ITS that 
presents problems to students and helps them to improve their knowledge of SQL. SQL-
Tutor represents a domain model in the form of constraints. Constraints represent the 
fundamental principles of SQL and must be satisfied in any correct solution. Each SQL-
Tutor problem has a set of relevant constraints. If the student solution violates these 
constraints, the solution is incorrect. The constraint set in SQL-Tutor contains about 700 
constraints that assess the syntactic and semantic correctness of the solution.  

The gist of the user modeling approach in both SQL KnoT and SQL-Tutor is quite 
similar: they construct an overlay of the domain vocabulary of knowledge items 
(constraints or concepts); nevertheless, the fundamental differences between the two 
domain models make the alignment of their models quite challenging. The unique nature 
of SQL-Tutor constraints makes the use of the known automatic ontology mapping 
techniques impossible. A constraint is not directly related to a single concept or a sub-tree 
of the ontology; instead, it models the syntactic or semantic relations between various 
concepts. As a result, the mapping is not one-to-one, but many-to-many. 

System A System B

User 

model A

User 

model B

E1

Evidence

E2 Ei... ...

Translation

time



 

Figure 2 A fragment of constraints-to-concepts mapping with weights 

We charged a number of experts with the task of mapping the two domain representations 
[13]. The resulting mapping contained a set of constraint-concept relations with the 
relevance weights: small (1/3), medium (2/3), or large (3/3=1). A fragment of the 
mapping is shown in Figure 2. The formula for computing the concept knowledge scores 
is shown in Equation (1). Namely, sum of weights between the concept and satisfied 
constraints minus sum of weights between the concept and broken constraints, divided by 
the sum of weights between the concept and all activated constraints. 

€ 

Sconcept = ΣW(concept,constraint )
+ − ΣW(concept,constraint )

−( ) ΣW(concept,constraint )  (1) 

Both systems were deployed in an undergraduate database course at the School of 
Information Sciences, University of Pittsburgh during the Fall 2008 semester. Students 
had access to 300 SQL-Tutor problems and over 50 parameterized SQL KnoT problems. 
The student’s progress was stored in one single long-term user model. SQL-Tutor was 
responsible for nearly a quarter of the students’ problem-solving activity (SQL KnoT was 
responsible for the rest), despite that fact that SQL-Tutor was made available only in the 
middle of the semester and students were already familiar with SQL KnoT. 

3.2 Problems Of Manual Mapping 

Despite tangible progress in integrating the two SQL problem-solving tools, there are still 
open questions pertinent to this particular integration effort and to user model integration 
in general. First, merging the user models leaves the issue of the merger quality 
unanswered. The fusion of the user models does not automatically improve the quality of 
the combined model. Second, we relied on expert opinion to come up with the mapping. 
From the literature, we know that the experts can reliably identify mapping relations 
between items of two domains [8]. However, assigning an appropriate weight – even on a 
simpler categorical scale – often poses a problem [6]. The same person can change 
his/her opinion if the weighting procedure is repeated. This means that, even if all 
relations between concepts and constraints were identified correctly, the assigned weights 
could still be suboptimal; as a result, the quality of the mapped model would be poor. 

3.3 Towards Automated Model Mapping 

To answer these questions, we suggest using an optimization procedure to refine the 
expert-assigned constraint-to-concept weights. The idea is to employ the student logs of 
the source system (SQL-Tutor) to create and fine-tune a custom user model using least 

147 "You have used some names 

in the WHERE clause that are not 

from this database."

207 "You need to specify the join 

condition in FROM!" 

Join

FROM Clause

Attribute

Table

Database

ConceptsConstraints
w=1

w=2/3

w=2/3

w=2/3

w=1/3



square fitting method with the mean squared error as the criterion. Then, using the same 
student logs, we utilize the experts' mapping to compute the mean squared error of the 
now mapped concept-based user model. Performing the search in the weight-space, we 
are minimizing the error of the target model, thus refining the mapping. 

Our hypothesis is that the suggested procedure would be able to, first, improve user 
model integration by optimizing expert weights. Second, starting with constant or random 
weights, produce the weights, without considering expert suggestion. Here, we expect the 
optimization results to be not as good as the one starting with expert mapping. And third, 
change the mapping links structure (by setting weights =0) for a more optimal one. 

4 Experimental Study Of Automated Model Mapping 

To verify the validity of the approach suggested, we conducted a set of experiments. First 
of all, to establish the baseline for mapping, we constructed the source constraint-based 
user model in such a way that modeling parameters minimize the modeling error. Second, 
the optimization was repeated. This time, the variables were the mapping weights and the 
objective function was the mean squared error of the mapped concept-based model. 

Logs of the three database courses offered at the University of Canterbury in the 2006-
2007 term were used for the experiment. We took the logs of the first course that 
contained 3544 transactions of 38 students. Each log entry contained user id, problem id, 
time the solution was submitted, solution correctness, list of confirmed constraints, and a 
list of broken constraints (if the solution is not correct). At the first stage of the 
experiment, we used user modeling approach that was different from the one deployed 
with SQL-Tutor, namely – Bayesian Knowledge Tracing (BKT) [5] – an established user 
modeling method in the area of intelligent tutoring systems. It the second stage, we used 
three sets of weights: supplied by the experts, equal constant weights, and the random 
weights. The details and the results of these procedures are given below. 

4.1 Baseline Constraint-Based User Model 

As we have mentioned before, Bayesian Knowledge Tracing (BKT) was used as the 
baseline user modeling approach in SQL-Tutor. BKT assumes a two-state model of 
knowledge items (often called skills or rules) of a particular learning domain. The 
knowledge item (KI) is either in a learned or unlearned state. While interacting with the 
system, knowledge of KI can transition from the unlearned to the learned state. Even if a 
KI is in the learned state, a student can make a mistake. As in the unlearned state, there is 
a chance student can guess correctly. For each of the modeled KIs, BKT model maintains 
four parameter estimates: p(L) – the probability that KI is in the learned state, the 
probability that KI is in the learned state prior to interacting with the tutor is p(L0); p(T) – 
the probability that the KI will transfer to the learned state on next time user practices it; 
p(S) – the probability the student will slip and apply the KI incorrectly even when it is in 
the learned state; and finally p(G) – the probability that the student will apply the KI 
correctly despite it being in the unlearned state. For details on BKT models, refer to [5] 



We adhered to the usual practice of BKT modeling and kept a unique set of parameters 
p(L0), p(T), p(S), and p(G) for each KI and had a separate running estimate of p(L) for 
each user-KI pair. Counter to the tradition, we didn’t assume conditional independence of 
KIs and obtained estimates for all parameters together. Reason being the special feature 
of constraint-based model: constraints always spanned several domain concepts. One 
other usual BKT practice is using only the first chance to apply the knowledge item per 
problem attempt. This rule is often used in the so-called inner-loop tutors that walk 
students through each step of the problem solving activity. SQL-Tutor is an outer-loop 
tutor: it gives feedback only when a complete problem solution has been submitted. It is 
common to see same constraint both satisfied and broken in the problem several times not 
knowing which came first. We ignored repetitions, and when the constraint was both 
satisfied and broken, set the value of p(L) to the arithmetic mean of p(L)+ (assuming 
correct response came first) and p(L)— (assuming incorrect response came first). 

Table 1 Results of fitting source BKT model of SQL-Tutor constraints. 

Parameter Value Parameter Value 

p(L0) – a priori knowledge level  0.642 p(S) – probability of slip 0.206 
p(T) – probability of transfer 0.523 p(G) – probability of guess 0.187 
Mean Squared Error of modeling 0.248   

Out of about 700 constraints, we selected only those occurring in the user logs. In 
addition, we filtered out constraints that are always satisfied and never broken. This gave 
us 282 constraints with 4 parameters to estimate for each: a total of 1,128 parameters. 
Each constraint was treated as a separate KI. Mean squared error was used as an objective 
function of the optimization. To compute the BKT models, we used Matlab. Fitting was 
done using Matlab’s implementation of linear square fitting procedure using trust region 
reflective algorithm. The parameters of the resulting source BKT model of constraints are 
shown in Table 1. Model parameters given are weight-averaged over all participating 
constraints (the number of constraint occurrences in the log weights its contribution). 

4.2 Mapping Weights Optimization 

To optimize the model mapping weights, we modified the code used to construct the 
baseline constraint-based BKT model. User model parameters were held constant and 
mapping weights were used as variables. Objective function remained the same – mean 
squared error of modeling. The original constraint-based user model was updated as 
before, but for the computation of the user model error it was mapped to concept-based 
model using Equation (1). Since in the previous stage we reduced the number of 
participating constraints, the original number of 1,012 constraint-concept links/weights 
decreased to 576. Three sets of weights were used. The first set contained weights 
produced by experts: low, medium, or high (1/3, 2/3, and 1=3/3 respectively). In the 
second set, all weights were set to 0.5. In the third set, all weights were randomly chosen 
from 0.0 to 1.0. As in the case with BKT modeling of constraints, we did not assume 
conditional independence of sets of weights and all of the 576 weights were fit together. 
Matlab’s constrained nonlinear multivariable optimization procedure was used with an 
active-set algorithm. Table 2 presents the results of the optimization experiments. 



Table 2 Results of weight mapping refinement 

 Expert 
weights 

Constant 
weight = 0.5 

Random  
0.0 to 1.0 

Mean squared error before refinement 0.454 0.453 .463 
Mean squared error after refinement 0.290 0.270 .463 
Number of weights changed 44 576 0 
Mean absolute weight change 0.031 0.496 0 
Weights decreased / increased 44 / 0 52 / 524 0 
Weights set to zero values 34 52 0 

As we can see, under all three starting conditions the initial mean squared error was 
roughly the same: 45%-46%. However, only the first two conditions (originating from 
expert weights and from constant weights) lead to improved modeling error rate. 
Optimization of the expert-supplied weights ended with a 29% error rate, only 4% worse 
than the original constraint-based BKT model. The mapping originating with constant 
weights of 0.5, counter to our expectations, beat that figure by 2% and reached a 27%. 
Optimization of random weights did not lead to any changes. 

Although expert weights were closer to the found optimum (44 out of 576 weights were 
changed in the process of optimization and all of them were decreased) than constant 
weights (all weights were changed, 524 weights increased and 52 decreased), in both 
cases the optimization procedure arrived at similar results. In the process of optimization, 
34 and 52 mapping links were removed in the expert and constant conditions 
respectively. Despite promising results, our solutions look like local optimums. Mean 
absolute difference of weights between expert-originated and constant-originated sets is 
0.3581 and the number of removed links agreed upon is only 13. 

5 Discussion 

Our experiments have successfully shown the high potential of using numeric 
optimization to refine the expert’s alignment of two user models in general. In our case 
the mapping of the source constraint-based mode of SQL-Tutor to the concept-based 
model of SQL KnoT was significantly improved. The original 45% error of the mapped 
model was reduced to 29%; only 4% shy of the source model’s error. Taking into account 
principal differences between the two domain vocabularies mapped, the achieved result is 
impressive. The refinement of uniformly assigned constant weights, against our 
expectations, was able to achieve an even better 27% error. Although a 2% difference 
does not seem like a tangible one, what counts is that refining constant weights was 
comparable to the original constraint-based model. In the light of these results, in the 
future one could free experts from weight assignment entirely. The only thing left for 
experts to do is to set inter-model relations. The rest could be handled by the procedure 
we proposed. The optimization procedure also demonstrated the ability to not only 
change the weights, but also to drive them to zero as an indication of some of the model 
mapping links to be redundant. This could serve as an additional check of the mapping 
quality and as an aid to human experts in the by-hand iterative process of mapping. 



Despite its merits, there are several limitations to this work. First, mapping links could 
only be removed, not added as in some automated mapping approaches. A possible 
remedy for this could be changing the link selection procedure when merging the experts’ 
suggestions. Instead of using the relations agreed upon by the majority of experts, all 
suggested links could be considered and then the refinement procedure would do the 
necessary filtering. In general, additional expert verification of the refined mapping might 
be necessary. Computationally optimal mapping might not be pedagogically sound. 
Inappropriate mapping links might be emphasized by the use of maximal weights and 
important links could be removed. Second, we did not assume conditional independence 
of mapping weights and optimized all 576 weights at once. This posed a computation 
challenge for the optimization procedure. Also we used only a part of SQL-Tutor logs, 
one course worth of logs out of three available. A limited number of data points (3544) 
might have been a contributing factor for entrapment in the local minima of the objective 
function and possibly over-fitting. Mining large volumes of user data and enforcing 
conditional independence of the mapping weights could solve both of these issues. Third, 
the user model transformation formula inherently normalizes weights and scaling all 
mapping weights has no effect. For example, a set weights equal to {1, 2, 3} would be 
equivalent to {.1, .2, .3} or {.2, .4, .6}. However, optimization procedure treats scaled 
weights as completely different. Changing the transformation formula or the optimization 
procedure for the ones that don’t suffer from this phenomenon could further improve the 
mapping. And finally, both the proposed procedure and the refined weights it produced 
could possibly be sensitive to a particular user modeling approach employed (Bayesian 
Knowledge Tracing in our case). At this point we cannot confirm whether the obtained 
weights would remain optimal, if modeling formalisms are replaced with alternative 
ones. We plan to continue this work and further investigate the issue. 

References 

[1] Berkovsky, S., Kuflik, T., and Ricci, F. (2006). Cross-Technique Mediation of User 
Models.  In V. P. Wade, H. Ashman, and B. Smyth (Eds.), 4th International Conference 
on Adaptive Hypermedia and Adaptive Web-Based Systems (AH 2006), (pp. 21-30). 

[2] Brusilovsky, P., Mitrovic, A., Sosnovsky, S., Mathews, M., Yudelson, M., Lee, D., 
and Zadorozhny, V. (2009). Database exploratorium: a semantically integrated adaptive 
educational system.  In S. Berkovsky, F. Carmagnola, D. Heckmann, and T. Kuflik 
(Eds.), 7th International Workshop on Ubiquitous User Modelling (UbiqUM 2009). 

[3] Brusilovsky, P., Sosnovsky, S., Yudelson, M., Kumar, A., and Hsiao, S. (2008). User 
model integration in a distributed adaptive E-Learning system.  In S. Berkovsky, F. 
Carmagnola, D. Heckmann, A. Krueger, and T. Kuflik (Eds.), International Workshop on 
User Model Integration, (pp. 1-10). 

[4] Brusilovsky, P., Sosnovsky, S. A., and Shcherbinina, O. (2005). User Modeling in a 
Distributed E-Learning Architecture.  In L. Ardissono, P. Brna, and A. Mitrovic (Eds.), 
10th International Conference on User Modeling (UM 2005), (pp. 387-391). 



[5] Corbett, A. T. and Anderson, J. R. (1995). Knowledge tracing: Modeling the 
acquisition of procedural knowledge. User Modeling and User-Adapted Interaction, 4(4), 
253-278. 

[6] Dawes, R. (1979). The robust beauty of improper linear models in decision making. 
American Psychologist, 34(7), 571-782. 

[7] Denaux, R., Dimitrova, V., and Aroyo, L. (2005). Integrating Open User Modeling 
and Learning Content Management for the Semantic Web.  In L. Ardissono, P. Brna, and 
A. Mitrovic (Eds.), 10th International Conference on User Modeling (UM 2005), (pp. 9-
18). 

[8] Giarratano, J. C. and Riley, G. (1989). Expert Systems: Principles and Programming. 
Boston, MA: PWS-Kent Publishing Co. 

[9] Kalfoglou, Y. and Schorelmmer, M. (2003). Ontology Mapping: the State of the Art. 
The Knowledge Engineering Review, 18(1), 1-31. 

[10] Kay, J., Kummerfeld, B., and Lauder, P. (2002). Personis: A Server for User Models.  
In P. D. Bra, P. Brusilovsky, and R. Conejo (Eds.), 2nd International Conference on 
Adaptive Hypermedia and Adaptive Web-Based Systems, Second (AH 2002), (pp. 203-
212). 

[11] Mitrovic, A. (2003). An Intelligent SQL Tutor on the Web. Iinternational Journal of 
Artificial Intelligence in Education, 13(2-4), 173-197. 

[12] Mitrovic, A. and Devedzic, V. (2004). A Model of Multitutor Ontology-based 
Learning Environments. Continuing Engineering Education and Life-Long Learning, 
14(3), 229-245. 

[13] Sosnovsky, S., Mitrovic, A., Lee, D. H., Brusilovsky, P., Yudelson, M., Brusilovsky, 
V., and Sharma, D. (2007). Towards integration of adaptive educational systems: 
mapping domain models to ontologies.  In N. Capuano, D. Dicheva, A. Harrer, and R. 
Mizoguchi (Eds.), 5th International Workshop on Ontologies and Semantic Web for E-
Learning (SWEL'2007). 

[14] Sosnovsky, S. A., Brusilovsky, P., Lee, D. H., Zadorozhny, V., and Zhou, X. (2008). 
Re-assessing the Value of Adaptive Navigation Support in E-Learning Context.  In W. 
Nejdl, J. Kay, P. Pu, and E. Herder (Eds.), 5th International Conference on Adaptive 
Hypermedia and Adaptive Web-Based Systems (AH 2008), (pp. 193-203). 

[15] Sosnovsky, S. A., Dolog, P., Henze, N., Brusilovsky, P., and Nejdl, W. (2007). 
Translation of Overlay Models of Student Knowledge for Relative Domains Based on 
Domain Ontology Mapping.  In R. Luckin, K. R. Koedinger, and J. E. Greer (Eds.), 13th 
International Conference on Artificial Intelligence in Education (AIED 2007), (pp. 289-
296). 

 


